Bittensor 利用其独创的 AI 子网结构和激励机制,重新定义了群体智能网络,实现了 AI 和 Web3 的有机结合。
撰文:Trustless Labs
随着人工智能(AI)技术的蓬勃发展,我们正在进入一个数据驱动的新时代。深度学习和自然语言处理等领域的突破,使得 AI 的应用无处不在。2022 年 ChatGPT 的诞生引爆了 AI 行业,随之出现的是一系列如文生视频、自动办公的 AI 工具,而「AI+」的运用也被提上日程。AI 行业的市场价值也随之一路飙升,预计在 2030 年达到 1850 亿美元。
图 1 AI 市场价值变化
目前 AI 行业主要由英伟达、微软、谷歌、OpenAI 等公司垄断,技术的进步同样带来了数据集中、计算资源分配不均等一系列挑战。与此同时,Web3 的去中心化理念为解决这些问题提供了新的可能性,在 Web3 的分布式网络中,将会重塑当下 AI 发展格局。
在 AI 行业风起云涌之际,也涌现了一大批优质的 Web3+AI 项目。Fetch.ai 通过区块链技术创建去中心化的经济体,支持自主代理和智能合约,用于优化 AI 模型的训练和应用;Numerai 利用区块链技术和数据科学家社区来预测市场走势,并通过奖励机制来激励模型开发者;Velas 构建 AI 和区块链的高性能智能合约平台,提供更快的交易速度和更高的安全性。AI 项目本身包含三大要素:数据、算法、算力,Web3+ 数据、Web3+ 算力赛道当下发展如火如荼,但 Web3+ 算法方向却一直各自为战,最终只能形成一个个单方向应用的项目。Bittensor 抓住了这一缺口,通过区块链本身的竞争和激励机制,搭建了一个自带筛选竞争机制的 AI 算法平台,保留最优质的 AI 项目。
Bittensor 是一个去中心化的激励机器学习网络和数字商品市场。
与当前市场上许多高估值的 VC 项目不同,Bittensor 是一个更加公平、有趣和有意义的极客项目,它的发展历程中也没有其他项目的「从画大饼到骗投资」的过程。
图 2 Bittensor 网络宣传图
在 Bittensor 的发展历程中,并未有太多传统 VC 插手其中,避免了集中化控制的风险。项目通过代币激励节点和矿工,也保障了 Bittensor 网络的活力。从本质上看,Bittensor 是一个 GPU 矿工驱动的 AI 算力与服务项目。
Bittensor 网络代币为 TAO,为表示对比特币的推崇,TAO 在许多方面与 BTC 类似。其总供应量为 2100 万枚,每四年进行一次减半。TAO 代币在 Bittensor 网络启动时通过公平启动(fair launch)分发,没有预先挖矿,所以没有代币保留给创始团队和 VC。目前大约每 12 秒生成一个 Bittensor 网络区块,每个区块奖励 1 $TAO 代币,每天大约生成 7200 个 TAO,这些奖励现按贡献分配给每个子网,然后在子网中分配给子网所有者、验证者和矿工。
图 3 Bittensor 社区宣传图
TAO 代币可用于在 Bittensor 网络购买和获取计算资源、数据和 AI 模型,同时也是参与社区治理的凭证。
Bittensor 网络账户总数量目前高达 10 万 +,其中非零账户数多达 8 万。
图 4 Bittensor 账户数量变化
在过去的一年中,TAO 最高上涨数十倍,目前市值 22.78 亿美元,币价 321 美元。
图 5 TAO 代币价格变化
Bittensor 协议是一种去中心化的机器学习协议,它支持网络参与者之间交换机器学习能力和预测,并通过以点对点的方式促进机器学习模型和服务的共享和协作。
图 6 Bittensor 协议
Bittensor 协议包含网络架构、子张量、子网架构、子网生态中的验证者节点、矿工节点等。Bittensor 网络本质上是一组组参与协议的节点,在每个节点上都运行着 Bittensor 客户端软件,从而与其他网络交互;这些节点由一个个子网负责管理,并采取优胜劣汰的机制,总体表现不好的子网会被新子网淘汰,而每个子网中表现不好的验证者和矿工节点也会被挤出。可见,子网是 Bittensor 网络架构中最重要的一环。
子网可以看作一段独立运行的代码,制定了独特的用户激励和功能,但每一个子网都保持了与 Bittensor 主网相同的共识接口。子网包含本地子网、测试网子网和主网子网三种类型。除去根子网,目前存在 45 个子网,预计在 2024 年 5 月至 7 月,子网数量将从 32 个增长到 64 个,每周增加 4 个新子网。
整个 Bittensor 网络中存在用户、开发者、矿工、质押验证者、子网所有者、委员会六种功能角色。而子网中包含子网所有者、矿工和质押验证者。
子网排放(emission)是 Bittensor 网络中、奖励给矿工和验证者的 TAO 代币分配机制,子网获取的排放量奖励中一般设计为 18% 分配给子网所有者、41% 分配给子网验证者、41% 分配给矿工。一个子网包含 256 个 UDI 插槽,其中 64 个 UID 插槽分配给验证者,192 个 UID 分配给矿工,只有前 64 名质押量最大的验证者才能获得验证者许可,并被认为是子网中的活跃验证者,验证者的质押量和性能决定其在子网中的地位和奖励。矿工的表现通过子网验证者的请求和评估进行评分,表现不佳的矿工会被新注册的矿工替换。因此验证者质押代币总量越多,矿工计算效率越高,子网总排放量越高,排名越靠前。
子网注册后会进入 7 天的免疫期,首次注册费用为 100 $TAO,而再次注册价格会翻倍,且该加格会随时间回落至 100TAO。当所有子网位置用满时,注册新的子网时将会删除排放(emission)最低且不处于免疫期的一个子网用于接纳新子网。所以子网需要尽可能提高 UID 插槽内验证者质押量和矿工效率,保证在免疫期后不被删除。
图 7 子网名称
受益于 Bittensor 网络的子网架构,去中心化 AI 数据网络 Masa 得以落地,成为 Bittensor 网络中第一个双币奖励系统,吸引了 1800 万美元融资。
图 8 Masa 宣传
Bittensor 网络包含多种共识机制和证明机制。在传统的去中心化网络中,对于矿工节点往往运用 PoW(工作证明),确保了矿工在网络中的贡献,并基于其计算能力和数据处理质量获得奖励;对于验证者节点,一般采取 PoV 机制(验证证明),确保了网络的安全性和完整性。而在 Bittensor 网络中,独创 PoI 机制(智力证明)并配合 Yuma 共识,实现验证和奖励分配。
Bittensor 的 PoI 机制是一种独创的验证和激励机制,通过智能计算任务的完成来证明参与者的贡献,从而确保网络的安全性、数据质量和计算资源的高效利用。
Yuma 共识是 Bittensor 网络的核心共识机制,当验证者根据任务完成情况得出评分后,将评分输入 Yuma 共识算法。在共识算法中,质押 TAO 数量多的验证者评分比重高,同时算法会筛除与大部分验证者偏离的结果,最后系统根据综合评分分配代币奖励。
图 9 共识算法示意
Bittensor 在网络中引入 MOE 机制,在一个模型架构中集成多个专家级别的子模型,每一个专家模型在处理对应领域问题时,具有相对优势。因此,在新的数据被引入整个模型架构时,不同的子模型可以协同工作,得到比单一模型更好的运行结果。
在 Yuma 共识机制配合下,验证者也可以对专家模型进行评分,并对其能力进行排名,和分配代币奖励,从而激励模型优化和改进。
图 10 问题解决思路
截止至撰稿时间,Bittensor 子网注册数量达到 45 个,已命名数量为 40 个。在过去子网限定数量时,子网注册竞争非常激烈,注册价曾一度高达百万美元。目前 Bittensor 逐步开放更多的子网注册名额,新注册的子网在稳定性、模型功效等方面可能不及运行时间较长的子网。但是由于 Bittensor 引入的子网淘汰机制,在长期来看,是一个良币淘汰劣币的过程,模型性能较差、实力不足的子网将难以生存。
图 11 Bittensor 子网项目明细
除去 root 子网,目前子网中 19 号、18 号、1 号,受到较大关注;排放量占比分别为 8.72%、6.47% 和 4.16%。
19 号子网名为 Vision,注册于 2023 年 12 月 18 日。Vision 专注于去中心化图像生成和推理;该网络提供最佳开源 LLM、图像生成模型(包括在子网 19 的数据集上训练的模型)和其他杂项模型(如嵌入模型)的访问。
目前 Vison 子网插槽注册费用为 3.7 TAO、24 小时节点总收益约 627.84 TAO、过去 24 小时回收了价值 64.79TAO 的节点;如果新注册的节点可以达到平均水平,每日收益可达 2.472 TAO,约 866 美元。
图 12 Vison 子网注册费用数据
目前 Vision 子网回收节点总价值约 19200 TAO。
图 13 Vision 子网回收费用
18 号子网名为 Cortex.t,由 Corcel 开发。Cortex.t 致力于构建前沿 AI 平台,通过 API 向用户提供可靠、高质量的文本和图像响应。
目前 Cortex.t 子网插槽注册费用为 3.34 TAO、24 小时节点总收益约 457.2 TAO、过去 24 小时回收了价值 106.32 TAO 的节点;如果新注册的节点可以达到平均水平,每日收益可达 1.76 TAO,约 553.64 美元。
图 14 Cortex.t 子网注册费用数据
目前 Cortex.t 子网回收节点总价值约 27134 TAO。
图 15 Cortex.t 子网回收费用
1 号子网是由 Opentensor 基金会开发,专门用于文本生成的去中心化子网;该子网作为 Bittensor 子网的第一个项目,曾经受到极大质疑;今年 3 月,Taproot Wizards 创始人 Eric Wall 称呼 Bittensor 的 TAO 代币是 AI 领域的 meme 币,并指出 1 号子网在回答文本类问题时让上百节点通过 AI 得出类似结果,并不能提高解决实际问题的效果。
从模型类别上看,19、18、1 号子网模型均属于生成类模型。除此之外,还有数据处理大模型、交易 AI 模型等,如子网 22 Meta Search,通过分析推特数据提供市场情绪,子网 2 Omron 通过深度神经网络学习在质押策略并不断优化。
从收益风险上看,如果可以成功运行插槽数周以上的时间,收益显然非常可观。但是如果新注册节点无法采用高性能显卡,并优化本地算法,很难在与其他节点的竞争中生存。
【免责声明】市场有风险,投资需谨慎。本文不构成投资建议,用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。