Highlights
On Distributed FRI-based Proof Generation
这篇博客讨论了分布式基于 FRI 的 SNARK 证明生成方案。方案将不同子多项式的证明过程分配到不同的证明者上,利用这些子多项式都符合低阶多项式检查的特性来组合它们,减少了计算和通信开销。
- https://hackmd.io/@nil-research/rJ_NVyiRA
zkVM Testing Report: Evaluating Zero-Knowledge Virtual Machines for Nescience
- https://vac.dev/rlog/zkVM-testing/
RISC ZERO: Introducing Steel 1.0
- https://risczero.com/blog/introducing-steel-1.0
- https://github.com/risc0/risc0-ethereum/tree/release-1.1/steel
WHIR: Reed–Solomon Proximity Testing with Super-Fast Verification
WHIR 既是里德 - 所罗门编码的 IOPP,也是多线性多项式承诺方案(PCS),并在所有此类方案中实现了最快的验证速度,甚至包括具有可信设置的单变量 PCS。它在保持基于哈希方案的最先进参数大小和验证器哈希复杂度的同时,只需要透明设置并保证后量子安全。
- https://gfenzi.io/papers/whir/
Succinct Ships: Optimized bn254 & bls12-381 Precompiles in SP1
- https://blog.succinct.xyz/succinctshipsprecompiles/
WE-KZG: Encrypt to KZG.
- https://www.zksecurity.xyz/blog/posts/kzg-we/
Introducing xOS: The Provable Exchange
The universal ZK settlement layer that makes any exchange Provable. xOS leverages@RiscZero's ZK prover with @CelestiaOrg underneath to prove off-chain transactions on-chain.
- https://x.com/hashflow/status/1843730011875877114
- https://medium.com/@hashflowdex/introducing-xos-the-provable-exchange-e875f4e6b30e
Zero Knowledge Summit 12 - LIVESTREAM
- https://www.youtube.com/watch?v=lVvct93zJz0
The Potential of OP_CAT for BTC - Using CAT20 as an Example
- https://hackmd.io/@GMhPT1-rT6GY8bYBRDh1jA/H1Hr8Hz11x
- https://hackmd.io/@GMhPT1-rT6GY8bYBRDh1jA/HyTbYJiA0
Why You Should Pay Attention to RC-STARKs by Omer@Ingonyama
This article provides a friendly exposition to the new paper: “Really Complex Codes with Application to STARKs” by @Yuval_Domb
- https://x.com/Ingo_zk/status/1844662138645688406
- https://eprint.iacr.org/2024/1620.pdf
Without Permission, With Programmable Cryptography
- https://x.com/oskarth/status/1844733717564309770
Odyssey: A testnet OP Stack rollup aimed at enabling experimentation of bleeding edge Ethereum Research.
- https://github.com/ithacaxyz/odyssey
Barycentric Interpolation
Barycentric interpolation is a variant of Lagrange polynomial interpolation that is fast and stable. It deserves to be known as the standard method of polynomial interpolation.
- https://people.maths.ox.ac.uk/trefethen/barycentric.pdf
- https://www.inf.usi.ch/hormann/papers/Hormann.2014.BI.pdf
Circuitscan: submit/browse verified Circom circuits
The Impact of Quantum Computing on the Security of zk-Proofs: Approaches to Post-Quantum Cryptography
- https://ethresear.ch/t/the-impact-of-quantum-computing-on-the-security-of-zk-proofs-approaches-to-post-quantum-cryptography/20623
Updates
circom 2.2.0 introduces a new feature called signal buses.
- https://github.com/iden3/circom/blob/master/mkdocs/docs/circom-language/buses.md
The MuSig2 module has been merged into libsecp256k1.
- https://x.com/n1ckler/status/1843311745860849940
Minimal Course on PCS in Python
- https://github.com/gy001/pypcs
Aztec: Road to Mainnet
- https://aztec.network/blog/road-to-mainnet
o1js-blobstream
- https://x.com/__geometrydev__/status/1843743002797490619
- https://github.com/geometers/o1js-blobstream
- https://o1js-blobstream.gitbook.io/o1js-blobstream
Ethereum's ZK & Formal Verification Endgame with Alexander Hicks
- https://www.youtube.com/watch?v=pIr1xlydm8k
Nexus: beta release of the Nexus network
the first distributed zkVM prover network openly accessible to anyone – is now live
- https://x.com/NexusLabsHQ/status/1843764801161601169
Papers
The Uber-Knowledge Assumption: A Bridge to the AGM
- https://cic.iacr.org/p/1/3/31
Special Soundness in the Random Oracle Model
- https://cic.iacr.org/p/1/3/26
Special Soundness Revisited
- https://cic.iacr.org/p/1/3/25
Capybara and Tsubaki: Verifiable Random Functions from Group Actions and Isogenies
- https://cic.iacr.org/p/1/3/1
WHIR: Reed–Solomon Proximity Testing with Super-Fast Verification
- https://eprint.iacr.org/2024/1586
Basefold in the List Decoding Regime
"It's a great week for Basefold! First, WHIR combines Basefold and STIR to yield an efficient multilinearPCS with the best of both constructions. Next, this work proves the size of Basefold-FRI is equal to the size of traditional univariate FRI 🎉" [Hadas Zeilberger@idocryptography]
- https://eprint.iacr.org/2024/1571
MPC-in-the-Head Framework without Repetition and its Applications to the Lattice-based Cryptography
- https://eprint.iacr.org/2024/1591
DART: Distributed argument of knowledge for rough terrains
- https://eprint.iacr.org/2024/1592
DeepFold: Efficient Multilinear Polynomial Commitment from Reed-Solomon Code and Its Application to Zero-knowledge Proofs
- https://eprint.iacr.org/2024/1595
Boosting SNARKs and Rate-1 Barrier in Arguments of Knowledge
- https://eprint.iacr.org/2024/1603
Nebula: Efficient read-write memory and switchboard circuits for folding schemes
- https://eprint.iacr.org/2024/1605
NeutronNova: Folding everything that reduces to zero-check
- https://eprint.iacr.org/2024/1606
Blaze: Fast SNARKs from Interleaved RAA Codes
- https://eprint.iacr.org/2024/1609
Structure-Preserving Compressing Primitives: Vector Commitments, Accumulators and Applications
- https://eprint.iacr.org/2024/1619
Really Complex Codes with Application to STARKs
- https://eprint.iacr.org/2024/1620
Faster Proofs and VRFs from Isogenies
- https://eprint.iacr.org/2024/1626
Lollipops of pairing-friendly elliptic curves for composition of proof systems
- https://eprint.iacr.org/2024/1627
If you’d like to receive updates via email, click subscribe. Stay informed and never miss a post!
- https://paragraph.xyz/@zkinsights
And our YouTube channel
- https://www.youtube.com/@ZKPunk-Org
如果你重视零知识证明技术信息的实效性和信息源质量的意义,不想娱乐至死、短视投机、无关广告、推荐算法、劣币驱逐良币的泥沙裹挟迷失,请多支持我们(包括给予赞助支持),让这一汨清流继续流淌~* 📮 邮箱订阅:https://paragraph.xyz/@zkinsights* 感谢 Kurt、Harry、Miles、fffmath、权 对本期 ZK Insights 的特别贡献!如果你对我们的 ZK Insights 感兴趣,或者有类似的内容分享想法,我们非常鼓励大家直接前往我们的 Github repo Pull Request,与有相同兴趣和爱好的 ZKPunk 一起共创!
Github repo link:https://github.com/Antalpha-Labs/zk-insights✨ 新网页汇总版:https://insights.zkpunk.pro/ Antalpha Labs是一个非盈利的 Web3 开发者社区,致力于通过发起和支持开源软件推动 Web3 技术的创新和应用。
官网:https://labs.antalpha.com
Twitter:https://twitter.com/Antalpha_Labs
Youtube:https://www.youtube.com/channel/UCNFowsoGM9OI2NcEP2EFgrw
联系我们:hello.labs@antalpha.com
点击 阅读原文 /Read More ,开启邮箱订阅🔛